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Abstract—The growth of demand response programs and
renewable generation is changing the economics of transmission.
Planners and regulators require tools to address the implications
of possible technology, policy, and economic developments for
the optimal configuration of transmission grids. We propose
a model for economic evaluation and optimization of inter-
regional transmission expansion as well as the optimal response
of generators’ investments to locational incentives, that accounts
for Kirchhoff’s laws and three important nonlinearities. One
is consumer response to energy prices, modeled using elastic
demand functions. The second is resistance losses. The third
is the product of line susceptance and flows in the linearized
DC load flow model. We develop a practical method combining
Successive Linear Programming with Gauss-Seidel iteration to
co-optimize AC and DC transmission and generation capacities
in a linearized DC network while considering hundreds of hourly
realizations of renewable supply and load. We test our approach
for a European electricity market model including 32 countries.
The examples indicate that demand response can be a valuable
resource that can significantly affect the economics, location, and
amounts of transmission and generation investments and that the
representation of losses and Kirchhoff’s laws are also important
in transmission policy analyses.

Index Terms—Transmission Planning, Demand Response, Non-
linear Optimization, Successive Linear Programming.

I. NOMENCLATURE

Sets and indices:

H : Set of hours, indexed h each represents a different
combination of load and renewable output

I : Set of buses, indexed i, j
N : Set of generation firms, indexed n
K : Set of generation technologies, indexed k
L : Set of AC corridors, indexed l
U : Set of DC corridors, indexed u

Parameters:
Aih, Bih : Inverse demand function parameters
CXl : Annualized capital cost of AC link [e/year]
CYik : Annualized capital cost of generator [e/MW/year]
CZu : Annualized capital cost of HVDC link [e/year]
Dih : Fixed demand under no demand response [MW]
Fl : Initial capacity of AC line [MW]
MCik : Marginal cost of generator [e/MWh]
NHh : Number of hours per year
Pu, Rl : Percentage of active power losses of DC line u and

AC line l loaded at maximum capacity
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Sl : Susceptance of AC line [p.u.]
Tu : Initial capacity of DC line [MW]
Wikh : Maximum capacity factor of generator
Y 0
nik : Initial installed generation of firm n [MW]

Φil : Node-line incidence matrix of AC lines
Ξiu : Node-line incidence matrix of DC lines

Variables:
aih : Net injection [MW]
dih : Forecast demand [MW]
f lh, f lh : Power flows on AC line [MW]
gnikh : Generation dispatch level [MW]
p∗ih : Locational marginal price [e/MWh]
tuh, tuh : Power flows on DC line [MW]
xl : Expansion, as percent of increase, on AC corridor
ynik : Generation capacity addition [MW]
zu : Expansion, normalized such that 1 is the

existing capacity, on HVDC corridor
θih : Phase angle
ρih : Curtailed demand [MW]

II. INTRODUCTION

REAL-TIME or spot pricing of electricity, first proposed
in the 1970’s by Schweppe [1], was originally foreseen

as a mechanism to balance supply and demand in an energy
marketplace. Since then, most electricity markets around the
world have implemented some form of spot pricing. How-
ever, many of those markets (especially in Europe) have not
implemented a nodal version of Schweppe’s spot pricing,
preferring zonal or even copper plate constructs. Further, all
these markets are largely or entirely one-sided, emphasizing
generation scheduling and prices that reflect the marginal costs
of generating power, with relatively little participation by the
demand-side. Contrary to Schweppe’s vision of supply and
demand being equal partners, consumers tend to be treated
as fixed loads, rather than equal parties who can modify their
loads and who can submit bids that can affect prices and reflect
the value of consumption. This reflects the reality that short-
term demand remains price-insensitive [2]. This insensitivity
is because retail rates are often regulated and are not varied
to reflect short-term system conditions, and furthermore most
consumers do not have the controls or information that would
enable them to respond to spot prices.

Nonetheless, although Schweppe’s original idea remains
only partially implemented in current market designs, there has
been a growing interest in mechanisms that will allow system
operators take advantage of flexible demand resources. Today’s
advances in smart metering technologies, together with the
creation of business models for demand aggregation, enable
more active participation by the demand side of the market.
Some of the benefits of demand response are load shifting
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from peak to off-peak hours, reducing the need for peaking
generation capacity; improved system reliability due to higher
flexibility; and market power mitigation due to increased
demand elasticity [3]. Furthermore, demand response can
help operators cope with the variability of large amounts of
variable renewable resources [4] [5]. For example, deferrable
loads can reduce the need for backup or fast-ramping thermal
generation that otherwise would have low capacity factors
[6]. Demand response can take the place of other measures
for managing renewable variability, such as storage or in-
terregional transmission designed to take advantage of load
and renewable diversity across space. Thus, power system
planning and policy analysis need to account for how demand
response affects the economics of generation and transmission
additions, and how smart grid technologies can help to avoid
costly infrastructure investments [7].

However, the transmission planning approaches used today
usually take into consideration only two types of demand
resources: narrowly focussed interruptible demand resources
and load reductions due to energy efficiency measures [8].
Although energy efficiency can be treated as an exogenous
modification of load, future demand levels under spot pricing
will be also affected by spot prices, which in turn are impacted
by generation and transmission investments, and therefore,
should be treated endogenously. Another way in which present
transmission planning approaches are simplified is that they
usually assume an exogenous pattern of generation capacity
that is not affected by the costs or location of transmission.
That is, a scenario of the locations, fuel-types, and amounts of
generation capacity is assumed, and then the cost-minimizing
transmission configuration needed to deliver that generation
is defined [8][9]. However, transmission expansion not only
can lower dispatch costs, it can also decrease the need for
building generation by improved siting, generation mixes,
and exploitation of load/resource diversity to lower reserve
margin requirements. To rigorously consider those benefits,
transmission and generation expansion should be considered
simultaneously in co-optimization models [10],[11], [12], [13];
one co-optimization study found that up to half of transmis-
sion’s benefits could be in the form of reduced generation
investment [14]. In a vertically-integrated utility environment,
co-optimization can be interpreted as a type of integrated
resource planning; in an unbundled environment, it is instead a
type of anticipatory planning, in which the transmission grid
owner projects how the grid configuration might affect the
response of generation investment and operations.

In this paper, we propose a model for co-optimizing in-
vestments in electricity transmission and generation capacity,
taking into account demand response, Kirchhoff’s laws, gen-
eration intermittency, and quadratic resistance losses. Using
a linearized DC power flow to approximate the effect of
Kirchhoff’s voltage on flows through AC lines, we assume
that both transmission and generation investments can take
place in small increments. This is of course a simplification,
since in reality line and generator capacities come in discrete
sizes. However, this simplification allows us to avoid the
use of integer variables, which permits much larger models
to be solved; furthermore, such a simplification is not an

unreasonable approximation when considering broad patterns
of transmission and generation many years or even decades in
the future. However, since line susceptances are proportional
to line capacities (given the assumed voltage and conductor
type), enforcing Kirchhoff’s voltage law (KVL) results in
nonlinear model constraints. This nonlinearity can be avoided
by assuming fixed PTDFs (as in [13]) or by using a trans-
portation model and thereby ignore Kirchhoff’s voltage law
altogether, but the resulting flows and interacting economics
of transmission, demand response, and generation could be
greatly distorted [15]. Another nonlinearity in our model
constraints results from incorporating quadratic losses [16].
Thus, assuming continuous capacity variables still results in a
difficult to solve nonlinear model.

The large scale of real world networks and the need
to model the nonlinearities resulting from Kirchhoff’s laws
and quadratic losses, together with the inability of nonlinear
solvers to solve large nonconvex problems reliably is a chal-
lenge that we attempt to overcome by using successive linear
programming (SLP) [17]. In general, a SLP solution strategy
consists of solving a sequence of linear programs in which
the nonlinear objective function terms and constraints of the
original nonlinear model are replaced with first-order approxi-
mations around the most recent solution, and then the resulting
LP is solved to generate a new solution. The process is iterated
until convergence, which can be guaranteed under restrictive
conditions that are unfortunately not satisfied by our model.
However, as we explain below, rapid convergence is achieved
for our model when we combine iterative linearization of the
transmission constraints with Gauss-Seidel iterations on load
(in which, like the Project Independence Evaluation System
(PIES) algorithm [18], the most recent energy balance duals
are used as prices and inserted into demand functions to update
the values of load used in the LP). The main advantages
of our approach are the possibilities of using out-of-the-box
algorithms that can efficiently solve very large linear programs.

We test our approach on a European Electricity Market
Model (a version of COMPETES [19]) for the year 2050
including flow-based market coupling of 32 countries, de-
mand response, and intermittency in generation (based on
the large scale renewable penetration assumptions of IRENE-
40 [20][21]). From our examples, we observe, first, that
disregarding Kirchhoff’s Voltage Law and/or quadratic losses
in policy models can distort the recommended transmission
and generation additions, and, second, that demand response
can be a valuable resource that can significantly affect the
economics, location, and amounts of transmission investments.

The article is organized as follows. In Section III we
summarize the existing literature on transmission planning
and demand response integration. Section IV describes the
formulation of our transmission-generation-demand response
co-optimization model. The formulation is first introduced
as a market equilibrium between independent but interacting
transmission, generation, and consumer entities; then an equiv-
alent single optimization model for computing that equilibrium
is presented, followed by the combined SLP/Gauss-Seidel
computational approach. In Section V we describe our test-
case, and the results for different scenarios are summarized in



JULY 21, 2014 3

Section VI. Conclusions are presented in Section VII.

III. LITERATURE REVIEW: APPROACHES TO MODELING
NONLINEARITIES IN NETWORK OPTIMIZATION

There exist an ample variety of optimization approaches
to transmission planning [22]. For computational reasons, AC
power flows are often modeled using linearized DC approx-
imations that disregard reactive power and ohmic losses [1].
Network optimization approaches that disregard Kirchhoff’s
Voltage Laws can be purely linear (e.g. [23]), but this as-
sumption could grossly distort transmission recommendations
in networked transmission systems [24][25]. Mixed-integer
formulations improve upon this assumption by including
Kirchhoff’s Voltage Laws as linear disjunctive constraints [26];
however, this approach presents numerical difficulties when
optimizing expansion of large scale transmission networks
with multiple investment alternatives. We use a DC approxima-
tion of the application of Kirchhoff’s voltage law to AC lines
(thus ignoring reactive power flows and voltage constraints),
and we represent high voltage DC lines as having controllable
flows.

The lossless DC power flow model, which is commonly
used in transmission planning models, has been improved
by modeling losses assuming they are either proportional to
line flow, a piecewise linear function of flow, or a quadratic
function of flow [16]. Some models with losses optimize
transmission additions using an objective function that min-
imizes the cost of investments and losses (e.g. [27][28][29]).
However, those approaches assume an exogenous cost of
losses, ignoring how the generation system is operated and
the resulting marginal sources of generation in different hours.
Other approaches seek to minimize the cost of transmission
investments and operating costs by modeling power losses
and generation dispatch explicitly in the system’s constraints.
Linear approximations (e.g., [30]) ignore the dependence of
losses on line loading conditions, an assumption that can be
improved using piecewise linear approximations in mixed-
integer programming formulations (e.g [31][32]). None of
those models consider demand response, and thus they dis-
regard the potential cost savings from the implementation
of demand response programs that can take advantage of
short-term price signals. Hence, our model improves on these
approaches by combining the quadratic loss formulation (as
in Appendix A of [1] or [16]) with elastic demand functions.

As illustrated in [5], the availability of short-term demand
response can shift some electric loads from peak to off-
peak hours, thereby reducing the need for investments in
peaking generation. The benefits of demand response pro-
grams in transmission planning have been analyzed treat-
ing demand response exogenously, considering various load
profile scenarios (e.g. [33]). However, in reality, shifts in
electricity consumption would result from the interaction be-
tween demand elasticity and spot prices which, in general,
can be location specific (Locational Marginal Prices, LMPs).
To the authors’ knowledge, the only transmission planning
models with endogenous consumers’ response are [34], for
price-responsive demand, and [35], where load-curtailment

programs are considered. However, those studies disregard
transmission losses.

Our model is a large nonlinear program. The objective func-
tion is nonlinear, involving the maximization of total market
surplus, which equals the sum of the (nonlinear) integrals of
the demand curves minus the sum of (linear) transmission and
generation costs. The constraint set is also nonlinear. Since
it includes nonlinear equality constraints, the feasible region
is nonconvex, which complicates computation and also means
that a local optimum may not be globally optimal. Large-scale
nonlinear programs such as this are much more difficult to
solve than linear programs, which leads us to consider SLP.
Successive linear programming has been widely used in other
disciplines to find optimal or high-quality solutions to large-
scale industrial problems [36]. Under certain conditions that
our model does not satisfy, the algorithm has been proven
to have superlinear convergence [37], and is guaranteed to
converge. In the field of power systems, SLP has often been
applied to solve AC optimal power flow problems [38] [39]
and reactive power planning problems [40]. However, it has
not, to our knowledge, been used for transmission planning in
which transmission capacity is a decision variable, much less
for transmission-generation-demand response co-optimization.

IV. MODEL DESCRIPTION

We describe our modeling approach in three steps. First
we pose a market equilibrium problem for a single year that
assumes perfect competition (price-taking behavior) among
all market parties, including the transmission owner, gener-
ators, and consumers. Second, we state a single optimization
problem that is equivalent to the market equilibrium problem
in which the sum of consumer, transmission, and producer
surpluses (market surplus) is maximized. Third, we describe
the combined SLP-Gauss-Seidel algorithm we use to solve the
optimization model.

A. Market equilibrium problem

A market equilibrium has two characteristics. First, each
market party pursues its own objective (its surplus), and
believes that it cannot increase its surplus by deviating from
the equilibrium solution. This is modeled by formulating the
maximization problem for each party (profit maximization
for generators, consumer surplus maximization for consumers,
and transmission surplus maximization for the grid operator),
and then deriving each problem’s first-order (KKT) conditions.
The second characteristic is that the market clears: supply
equals demand for energy at each node in the network. The
concatenation of KKT conditions for all market parties with
market clearing equalities yields what is known as a com-
plementarity problem, an increasingly common formulation
of energy market equilibrium problems [41]. The comple-
mentarity model of this section can be viewed as a variant
of short-run electricity market models in the literature (e.g.,
[16]) that include quadratic losses and capacity expansion,
while assuming competitive rather than oligopolistic behavior.
Complementarity problems can be solved either by specialized
algorithms or, in special cases, by instead formulating and
solving an equivalent single optimization model. We adopt
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the latter approach. However, we first present the optimization
problem for each of the market players, to make clear the
assumptions of the model. The models below represent costs
and revenues for a single year. This static representation
can easily be generalized (at the expense of having a larger
model) to a multiyear representation in which the timing of
investments is also a decision.

First, we consider the generator’s problem. Each chooses
generation production and capacity in order to maximize
its annualized profits. Price is treated as exogenous (which
is signalled by an asterisk *), consistent with our perfect
competition assumption. For each firm n ∈ N :

Max
y,g

∑
i,k,h

NHh(p∗ih −MCik)gnikh −
∑
i,k

CYikynik (1)

s.t. gnikh ≤Wikh(Y 0
nik + ynik) (λnik) ∀i, k, h (2)

gnikh, ynik ≥ 0 ∀i, k, h, (3)

where constraints (2) and (3) correspond to maximum genera-
tion limits and variable non-negativity, respectively. To account
for variability of renewable output, Wikh is a coefficient less
than or equal to one that varies depending on the hour h,
technology k, and location of generator i. This model can
readily be generalized to include nonlinear production cost
functions, ramp limitations, and other more realistic consider-
ations, with the exception of unit commitment constraints that
require binary variables.

Meanwhile, consumers at each location i choose demand
levels dih in each hour by maximizing their net surplus, given
by the difference between their valuation of the consumption
(which is the integral of their demand curve Pih(dih) =
Aih + Bihdih, summed across hours) and what they pay for
electricity (the electricity price p∗ih times consumption). For
consumers in region i ∈ I:

Max
dih

∑
h

NHh[dih(Aih +
1

2
Bihdih)− p∗ihdih] (4)

s.t. dih ≥ 0 ∀h. (5)

Here we assume that cross-price elasticities are zero, only
accounting for own-price elasticity. More general formulations
can consider cross-price elasticities across hours [5] or pricing
rules that average over zones or otherwise deviate from the
pure LMP model [42]. We disregard the possibility of loss of
load (unserved demand).

The grid planner and operator is modeled as a pool op-
erator: it buys power directly from generators and sells it
to consumers. The planner and operator is assumed to be a
single entity, although in reality there are multiple operators
(leading to seams issues) who can also be separate from grid
owners. The operator maximizes the revenues obtained from
this arbitrage minus the cost of losses and annualized expense
of transmission investment.

Max
f,t,θ,x,z,a

∑
i,h

NHhp
∗
ihaih −

[∑
l

CXlxl +
∑
u

CZuzu

]
(6)

s.t.∑
l

Φil[(f lh − rl(xl)(
1+Φil

2
)f

2

lh)− (f
lh
− rl(xl)( 1−Φil

2
)f2

lh
)]+∑

u

Ξiu[(tuh − ou(zu)( 1+Ξiu
2

)t
2
uh)− (tuh − ou(zu)( 1−Ξiu

2
)t2uh)]

− aih = 0 (χih) ∀i, h (7)∑
i

aih = 0 (ψh) ∀h (8)

f lh − f lh − Sl(1 + xl)
∑
i∈I

Φilθih = 0 (λlh) ∀l, h (9)

f lh − Fl(1 + xl) ≤ 0 (ξ+
lh) ∀l, h (10)

f
lh
− Fl(1 + xl) ≤ 0 (ξ−lh) ∀l, h (11)

tuh − Tuzu ≤ 0 (β+
lh) ∀u, h (12)

tuh − Tuzu ≤ 0 (β−lh) ∀u, h (13)

tuh, tuh, f lh, f lh, xl, zu ≥ 0 ∀l, u, h. (14)

Constraints (7) and (9) are Kirchhoff’s Current and Voltage
Laws,1 respectively. (10)-(11) are maximum and minimum
flow limits for AC lines, (12)-(13) are maximum and minimum
flows limits for DC lines,2 and (14) is the non-negativity
constraint.

Just for illustration purposes, we assume in our application
that the quadratic loss coefficients are inversely proportional
to the line capacities, approximated as rl(xl) = Rl

Fl(1+xl)
for

AC lines, and as ou(zu) = Pu

δ+Tuzu
for DC lines. The factors

Rl and Pu correspond to the fraction of active power losses
when the lines are loaded at their maximum capacity (e.g.,
5%) and depend on line lengths and characteristics. The term
δ > 0 in the denominator of the definition of ou(zu) is used
to avoid ou(zu) → ∞ if zu → 0, since we are considering
investment alternatives for new DC corridors. This correction
term δ results in a slight underestimation of the losses for
Tuzu << 1. Note that our definitions of the quadratic loss
coefficients for both AC and DC lines imply that doubling the
capacity will cut transmission losses in half for a given MW
flow over the line. It also implies that all AC line additions
have the same voltage and conductor characteristics (per MW
of capacity) as the existing line(s) in its corridor.

To complete the equilibrium model we need to define the
KKT conditions for the above surplus maximization problems,
and then add market clearing conditions. The KKT conditions
are given in the online Appendix [43] for the generators,
consumers, and the grid planner and operator.

1Note that in this model we only consider AC upgrades in existing corridors
and ignore the option of building new AC links that would create new parallel
flows in the system. The advantage of such assumptions is the continuity of
the nonlinear optimization problem, which in our experience increases the
likelihood of convergence of the successive linear programing approach to a
KKT point in the following section. A system with new AC corridors that
create new loops in the system present a physical discontinuity for extremely
small line upgrades, since constraint (9) should not restrict the angle difference
in the absence of transmission investments. As a result, the derivative of the
constraint with respect to capacity does not exist when AC line capacity is
zero, although this derivative is required by the SLP algorithm.

2To keep the model compact, we write the maximum flow constraints for
DC lines as if the initial installed capacity was zero. Where there is an existing
DC line (i.e., zu=1 already) this can be modeled by setting the associated
investment cost to zero without the need to reformulate the model.
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Finally, the market clearing conditions in the equilibrium
model correspond to the balance between transmission im-
ports/exports, transmission losses, generation, and demand for
each bus at every hour. The Lagrange multipliers of these
conditions correspond to the market’s LMPs:

aih +
∑
n∈N

∑
k∈Ki

gnikh = dih (p∗ih) ∀i, h. (15)

The KKT and market clearing conditions together define a
square system of complementarity and/or equality conditions,
in which the number of conditions equals the number of
variables [41]. This system could be solved for the market
equilibrium by using commercial complementarity solvers
such as PATH [44]. However, we take another approach,
described in the next subsection.

B. Equivalent Nonlinear Optimization Problem

We obtain the equilibrium by formulating and solving a
single nonlinear optimization problem (NLP) whose KKT
conditions are equivalent to the equilibrium problem (KKT
conditions of all the market agents plus market clearing
conditions).3

Max
f,t,θ,x,z,a,y,g,d

∑
i,h

NHh[dih(Aih +
1

2
Bihdih)−

∑
n,k

MCikgnikh]

− [
∑
l

CXlxl +
∑
u

CZuzu +
∑
n,i,k

CYikynik]

(16)
s.t. (2), (3) ∀n, (5) ∀i, (7)− (14),

aih +
∑
n∈N

∑
k∈Ki

gnikh = dih ∀i, h. (17)

The objective can be interpreted as total market surplus. This
is the sum of the objectives for generators, consumers, and
the grid operator; note that all revenue terms (involving energy
price p∗ih) from the objective functions of the individual player
problems cancel, leaving only the integral of the demand
functions minus all transmission and generation costs.

V. SLP/GAUSS-SIEDEL SOLUTION APPROACH

A. Equivalent Nonlinear Optimization Problem

SLP can be applied directly to the above nonlinear program.
However, we instead have had more success in achieving rapid
convergence by using the PIES [18] approach of dividing
the overall supply-demand equilibrium problem into separate
supply and demand models, and iterating between the two. In
the PIES approach, the supply model is a linear program that,
given a tentative set of energy demands, determines (a) how
those demands are to be met from the available supply as well
as (b) a set of prices equal to the marginal costs (duals) from
the supply-demand balances in the model. The demand model
in PIES is simply a statistically estimated (or, in our case,
assumed) set of demand functions that, given prices from the
supply function, calculates a new set of quantities demanded
(loads) to be used in the next iteration of the supply model.
In our application, the supply model is a transmission and

3Formulation of an NLP may not be possible for general complementarity
problems, but it is often feasible for problems formulated assuming perfect
competition (see, e.g., [41][45])

generation cost minimization model, subject to fixed demands
Dih that can be curtailed at cost VOLL:

Min
f,t,θ,x,z,a,y,g,ρ

∑
l

CXlxl +
∑
u

CZuzu +
∑
n,i,k

CYikynik

+
∑
n,i,k,h

NHhMCikgnikh +
∑
i,h

NHhV OLLρih (18)

s.t. (2), (3) ∀n, (7)− (14),

aih +
∑
n∈N

∑
k∈Ki

gnikh + ρih −Dih = 0 ∀i, h (19)

ρih ≥ 0 ∀i, h, (20)
where ρih is the curtailed load, which we include to ensure
that there is a feasible solution of the overall model. For
fixed demand levels Dih, the first order optimality conditions
of this problem are equivalent to the KKT conditions of
the generator’s and grid operator’s problems, and the market
clearing conditions (19) for inelastic demand. Thus, a solution
of the above NLP can be taken as an perfectly competitive
market equilibrium subject to the assumed fixed loads. The
duals for the energy balance (19) for each i and h can then
be inserted in the demand functions to calculate new Dih for
use in the next iteration of the supply model. In this way, we
can iterate between this NLP and the demand functions, and
if the procedure converges, it is an equilibrium.

B. Successive Linear Programming

Large scale nonlinear optimization problems like the above
NLP are computationally complex to solve. To overcome this,
we describe here an approach using successive linear program-
ming (SLP). In SLP, we solve the NLP via a sequence of linear
programs where all the nonlinear functions are linearized by
using their first-order Taylor series approximations. Abusing
notation, if F (x) = 0 corresponds to the nonlinear constraints
(i.e., (7) and (9)) in the NLP, the corresponding linear approx-
imations at vicinity of a point xk can be expressed as:

F (xk) +∇F (xk)∆x = 0, where ∆x = x− xk.

We impose fixed step size |∆x| ≤ γ similar to Method
II of [46] which converges quickly for our problem. We
include demand response by combining the SLP for the fixed
demand supply NLP with Gauss-Seidel iteration with the
inverse demand function. The SLP algorithm combined with
Gauss-Siedel proceeds as follows:
Step 0: Provide a starting point x0 to initialize the algorithm.
In our case, we generate the starting point by first solving the
planning problem ignoring demand response and losses and
only enforcing KVLs for the existing AC transmission lines.
Step 1: For given xk−1 and Dk−1, solve the linear optimiza-
tion problem subject to F (xk−1)+∇F (xk−1)(xk−xk−1) = 0,
yielding the primal solution xk and dual solution pk (i.e.,
electricity prices).
Step 2: Update demand Dk = P−1(pk) where P−1() is the
vector valued inverse demand function.
Step 3: Check convergence of the demand and objective
function value of NLP (18) with tolerance ε. If convergence is
achieved, accept the solution (xk, pk, Dk), else set k = k+ 1
and go to Step 1.
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If SLP with Gauss-Siedel converges to a solution that
satisfies the second order conditions,4 it is a local optimum to
the original problem NLP (16). Note that convergence is not
guaranteed for this NLP, but in our experience, the approach
has worked well.

VI. CASE STUDY: 2050 EU RENEWABLES DEVELOPMENT

A. Assumptions

We apply the approach of Section V-B to a large scale
European market model COMPETES [19] including 32 coun-
tries.5 COMPETES assumes an integrated EU market where
the trade flows between countries are constrained by Net
Transfer Capacities (NTC). The model also includes wind and
solar intermittency.6 Pre-calculated hourly intermittent variable
renewable and hydro generation are taken as must-run in the
model.

As initial capacities, we use the existing generation ca-
pacities from the WEPPS 2010 database [49] and the ten-
year network development plan of ENTSO-E [50]. For 2050,
we consider the Renewables Scenario (RES) of IRENE-40
[20][21]. In the RES scenario, the installed capacities of
renewables and nuclear are taken as exogenous since invest-
ments/decommissioning for these technologies are assumed to
be policy driven. Ambitious GHG targets and strong policy
support are assumed to drive the deployment of renewable
technologies. This includes large clustered offshore and on-
shore wind farms in the northwest, solar and wind in the south,
and hydropower and biomass in central and northern Europe.
Installed nuclear power capacity decreases to 115 GWe in
2050. In the inelastic demand case, electricity generation
from various renewable energy sources amounts to 80% of
total electricity generation in 2050 in accordance with ECF’s
80% renewable scenario [51]. We assume that only existing
conventional power plants commissioned in/after 2010 are
refurbished and operate in 2050 whereas older power plants
are all decommissioned. Annual investment costs are estimated
based on capital costs and economic lifetime assumptions in
[19] for generation technologies and in [21][52] for transmis-
sion technologies. For demand response, we assume that the
price elasticity of demand is -0.05.

We use a sample of 50 representative hours selected using
using k-means clustering [53]. The COMPETES model was
solved using CPLEX 12.5 in AIMMS. Solutions were iterated
up to 500 times to ensure convergence. The algorithm would
stop early if the moving average of the objective of the pre-
vious ten solutions fell within 0.001% of the current solution.

4At convergence, ∆x ≈ 0 is optimal and xk solves the linear approxima-
tion of the NLP problem. By Theorem 4.3.7 of [17], xk is a KKT point of
the NLP problem (18) (i.e., generators’ and TSO’s problem). In addition, the
convergence of Dk satisfies the KKT conditions of the consumers’ problem
and NLP (16). Since NLP (16) is nonconvex, a point satisfying the KKT
conditions is not sufficient for optimality. Thus, we should also check the
second order conditions at the converged point to ensure convergence to a
local optimum.

5COMPETES includes 26 EU members (excluding Malta), Norway,
Switzerland, and 4 non-EU Balkan countries. Network parameters are based
upon [21]. Every country is represented by a single node, except Luxembourg
which is included in Germany, and Denmark, which split in two nodes due
to its participation in two nonsynchronous networks.

6Hourly wind data values are estimated from 2004 profiles given by [47]
and hourly solar data are estimated from the profiles given by [48].

TABLE I
ANNUALIZED COSTS WITH AND WITHOUT DEMAND RESPONSE (DR)

Case Costs [Billion e/yr]
Operations New Gen New AC New DC Total

No DR 104.49 13.21 1.18 2.72 121.59
DR 92.63 10.62 1.20 2.71 107.16

Solutions were obtained within four hours on an Intel i5-
2450M processor. The two primary cases considered below are
the system with and without demand response. In addition, we
have also considered the impact of omitting quadratic losses
and Kirchhoff’s voltage law as sensitivity analyses.

B. Costs Savings with Demand Response

In both cases the total annualized cost is dominated by the
plant operations (85% of cost), with 10% of the costs made
up by generation capacity and the remainder consisting of
transmission capacity costs. Total cost is reduced by 11.9%
with the addition of demand response (Table I). A e14.4 B
cost reduction is derived from generation savings; 82% of this
reduction is from savings on operations, while the remaining
18% is from generation capacity reductions. The reduction in
operations cost is mainly a result of shifting demand from peak
hours. Net total electricity energy consumed decreases only
by 0.15%. Transmission costs remained effectively constant
between cases with a small net increase in costs resulting from
a reduction in DC transmission of e6.9 M combined with an
increase in AC transmission of e27.8 M. Demand response
changes LMPs, as expected, with the increased prices during
periods of low wind causing a shift of demand to times of
more wind and lower loads.

C. Changes in Investment Decisions with Demand Response

The differences between investment decisions made with
and without demand response are measured by two metrics
(see Table II). The first metric, which is the normalized
absolute sum of differences, captures changes on a line-by-
line basis, while the second metric, the normalized change in
additions, measures how the decisions change in the aggregate.
If the magnitude of the two metrics is the same, it indicates that
the siting of investments remained constant but the magnitude
of investment at those sites changed, which was the case with
generation capacity. Each metric was normalized by the total
additions in the solution without demand response. In the case
of AC transmission decisions the magnitudes of the two met-
rics differed significantly, indicating that there are significant
shifts in the siting of lines. DC transmission decisions shifted
but not as significantly as AC decisions. However, there was no
spatial shifting of generation capacity, with demand response
simply reducing the amount of generation investment.

TABLE II
METRICS OF SHIFTS IN INVESTMENT DECISIONS

Metric Generation AC DC
Capacity Transmission Transmission

Normalized Absolute
Sum of Differences 26.10% 10.32% 3.88%
Normalized ∆
Additions -26.20% 3.81% -1.45%
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Fig. 1. COMPETES network showing increases in AC additions in the
demand response case (relative to no demand response) as solid black lines
while dashed gray show DC lines.

Fig. 2. AC reductions in demand response case (relative to no demand
response) shown as solid black lines while dashed gray show DC lines. Circles
show reductions in generation capacity additions.

D. Spatial Changes in Transmission Investments

The shifts noted in transmission siting are portrayed in Figs.
1-2. With demand response, while the costs remained relatively
constant, there was a net increase in transmission capacity,
with AC capacity increasing while DC capacity decreased.
Looking only at the locations of increased capacity relative
to the no demand response case (Fig. 1), 32.5 GW of AC
capacity and 5.5 GW of DC capacity was added. Most of the
increased line capacity was located in Northern Europe. Fig. 2
shows corridors in which transmission investment was lower
in the demand response case with reductions of 15 GW of AC
and 12.1 GW of DC capacity. The corridors with the most
reductions are connected to buses where generation capacities
are also reduced. The differences of greatest magnitude are re-
ductions between Italy and Switzerland and additions between
Belgium and the Netherlands. However, those corridors are
heavily invested in within both cases. The largest corridor to
be developed only in one case is a 400 MW addition between
Albania and Serbia under demand response.

TABLE III
ANNUALIZED INCREASE IN COSTS FROM ADDING LOSSES AND KVLS

Case

Gen 

Operating 

Gen 

Capital

AC 

Capital

DC 

Capital

ΔM€ 1779.51 693.84 557.04 32.37

Δ% 1.92% 6.54% 46.30% 1.20%

ΔM€ -214.36 4.79 158.43 347.40

Δ% -0.23% 0.05% 13.17% 12.83%

ΔM€ 1973.05 586.64 337.44 496.01

Δ% 2.13% 5.53% 28.05% 18.31%

ΔM€ 1669.63 274.54 581.68 2.11

Δ% 1.60% 2.08% 49.50% 0.08%

ΔM€ -94.28 1.35 190.95 325.43

Δ% -0.09% 0.01% 16.25% 11.98%

ΔM€ 1653.71 277.28 339.73 562.49

Δ% 1.58% 2.10% 28.91% 20.71%

Note: Percentages relative to cost category in base case (either DR or no DR).

No DR

Adding Losses

Adding KVL

Adding KVL     

and Losses

Comparison

DR

Adding Losses

Adding KVL

Adding KVL     

and Losses

E. Effect of Modelling Simplifications

The impact of not including losses or KVLs is explored
by starting with a base version of the COMPETES model
without resistance losses or KVLs, and then adding those
features and examining how the costs change (Table III). In
terms of percentages in each category of cost, transmission
investments are affected far more than generation investments
and operating costs. For some cost categories, losses have a
bigger impact, while for others KVL is more important. The
direction of impacts even differ. For instance, even though
adding losses increase generation expenses, adding KVLs
surprisingly decrease those costs (although the transmission
cost increase more than makes up for that decrease). Also, it
turns out that losses and KVLs interact with cost increases
from adding both differing from the sum of their individual
impacts when added to the base case. For instance, adding
losses makes more of a difference in DC line investment
costs in a model with KVL than in a model without; and
adding KVL makes more of a difference in a lossy model than
a lossless one. Further, DC investments increase while AC
decrease when adding both because enforcing KVLs results
in power traveling further on AC lines, magnifying their
losses, thereby putting new AC investments at a disadvantage
compared to DC lines.

VII. CONCLUSIONS

The inclusion of demand response, losses, generation co-
optimization, and Kirchhoff’s voltage law all, help transmis-
sion policy and planning models more realistically model the
economics of investment. Due to the complexity and compu-
tational burden, that those features add, they are frequently
excluded from models, potentially distorting cost estimates
and investment recommendations. We developed a practi-
cal method combining Successive Linear Programming with
Gauss-Seidel iteration to co-optimize AC and DC transmission
and generation capacities while considering demand response
and system nonlinearities such as KVLs and resistance losses.
We tested our approach for an electricity market model COM-
PETES which represents transmission among 32 European
countries. The results indicate that demand response can be
a valuable resource that can significantly reduce generation
operating and investment costs. Although the cost of trans-
mission investments are affected only slightly, the siting of
transmission investment decisions changes significantly. Thus,
the potential benefits of demand response should be taken into
account in long-term transmission planning.
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APPENDIX A
KKT CONDITIONS

The KKT conditions for each generation firm n ∈ N are:
0 ≤ ynik ⊥ −CYik +

∑
h

µnikhWikh ≤ 0 ∀i, k (21)

0 ≤ gnikh ⊥ p∗ih −MCik − µnikh ≤ 0 ∀i, k, h (22)

0 ≤ µnikh ⊥ gnikh −Wikh(Y 0
nik + ynik) ≤ 0 ∀i, k, h (23)

The KKT conditions for the consumers in region i ∈ I are
0 ≤ dih ⊥ Aih +Bihdih − p∗ih ≤ 0 ∀i, h. (24)

The KKT conditions for the transmission grid operator are:

0 ≤ f lh ⊥ −
∑
i

χihΦil[1− rl(xl)(1 + Φil)f lh]

−λlh − ξ+
lh ≤ 0 ∀l, h (25)

0 ≤ f
lh
⊥
∑
i

χihΦil[1− rl(xl)(1− Φil)f
lh

]

+λlh − ξ−lh ≤ 0 ∀l, h (26)

0 ≤ tuh ⊥ −
∑
i

χihΞiu[1− ou(zu)(1 + Ξiu)tuh]

−β+
uh ≤ 0 ∀u, h (27)

0 ≤ tuh ⊥
∑
i

χihΞiu[1− ou(zu)(1− Ξiu)tuh]

−β−uh ≤ 0 ∀u, h (28)

θih free ⊥
∑
l∈L

λlhSl(1 + xl)Φil = 0 ∀i, h (29)

0 ≤ xl ⊥ −CXl +
∑
ih

χihΦilr
′
l(xl)

[
( 1+Φil

2
)f

2

lh − ( 1−Φil
2

)f2

lh

]
+
∑
h∈H

[
λlhSl

∑
i∈I

Φilθih + ξ+
lhFl + ξ−lhFl

]
≤ 0 ∀l (30)

0 ≤ zu ⊥ −CZu +
∑
ih

χihΞiuo
′
l(zu)

[
( 1+Ξiu

2
)t+2
uh − ( 1−Ξiu

2
)t2uh

]
+
∑
h∈H

[
β+
uhTu + β−uhTu

]
≤ 0 ∀u (31)

χih free ⊥
∑
l

Φil[(f lh − rl(xl)(
1+Φil

2
)f

2

lh)

−(f
lh
− rl(xl)( 1−Φil

2
)f2

lh
)]+∑

u

Ξiu[(tuh − ou(zu)( 1+Ξiu
2

)t
2
uh)

−(tuh − ou(zu)( 1−Ξiu
2

)t2uh)]

−aih = 0 (32)
aih free ⊥ p∗ih − ψh = 0 ∀i, h (33)

ψh free ⊥
∑
i

aih = 0 ∀h (34)

λlh free ⊥ f lh − f lh − Sl(1 + xl)
∑
i∈I

Φilθih = 0 ∀l, h (35)

0 ≤ ξ+
lh ⊥ f lh − Fl(1 + xl) ≤ 0 ∀l (36)

0 ≤ ξ−lh ⊥ f lh − Fl(1 + xl) ≤ 0 ∀l (37)

0 ≤ β+
lh ⊥ tuh − Tuzu ≤ 0 ∀u (38)

0 ≤ β−lh ⊥ tuh − Tuzu ≤ 0 ∀u (39)
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